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Abstract

In this paper some characterizations of the ratio asymptotics for general polynomials are
given. These results are extensions and improvements of the ratio asymptotics for orthogonal
polynomials and are applicable to the ratio asymptotics for polynomials with disturbed nodes.
© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction and main results

Given two triangular matrices of nodes (n>2):
1Zx10>x00> 0 >Xp 2 — 1 (1.1)
and
1Zyin-1>y2n1>>Yp-1p12 — 1, (1.2)

put

n

n—1
H X_xkn n 1 :H X = Vien— 1
k=1

The main aim of this paper is to give conditions such that the ratio asymptotics

w,(2) o
nlimm f(j)( ), Pz)=z+Vz2-1 (1.3)
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holds for every ze C\< — 1, 1>, where the branch of the square root is chosen so that

|z+Vvz2 — 1|>1, zeC\[—1, 1], and the interval { — 1,1 stands for one of the four
intervals [—1,1], (=1,1], [-1,1), and (—1,1).

To state our results we need some notations. Let us denote by L[—1,1] the set
of complex valued and Riemann integrable functions on [—1,1] and by C'[-1,1]
the set of continuously differential complex valued functions on [—1,1]. Write
f1(x) =1In(1 — x) and f2(x) = In(1 + x). Then the first main result of this paper is as
follows.

Theorem 1.1. Let assumptions (1.1) and (1.2) prevail and let

1 >x1,n ZYin-1 =Xy >y2,n71 = >xn71,n >yn71,n71 >xn,n> -1 (14)
Then the following statements are equivalent:

(a) relation (1.3) holds for every ze C\[—1, 1];
(b) the relation

nlefok,, "1xk"— /f W1 —x2dx (1.5)

holds for every feL[—1, 1];
(c) the relation

k=1

n—1 1
N D FCRED sy By gL 19
holds for every feC'[—1,1].

We also give the other three results concerning the ratio asymptotics (1.3)
including the endpoints of the interval [—1,1].

Theorem 1.2. Let assumptions (1.1) and (1.2) prevail and let

1 SXIpZ V-1 ZXo0Z V2012 ZXnApnZVn-ln-1ZXny> — 1. (17)
Then the following statements are equivalent:

(a) relation (1.3) holds for every ze C\(—1,1);
(b) the relation

. < anl(xk,n) _ 2 : f(x)
”angO kz:;f(xkﬂ) ! () (1 — xi,n) ~x /_l MT— 2 dx (1.8)

holds for every feL[—1,1];
(¢) relation (1.6) holds for every feC'[—1,1]U{f1,/>}.
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Theorem 1.3. Let assumptions (1.1) and (1.2) prevail and let
1 >xl,n >y17n—1 >x2,n >y2,n—l = >xn—17n Zyn—lA,n—l >xn,n> - L (19)
Then the following statements are equivalent:

(a) relation (1.3) holds for every ze C\[—1, 1);
(b) the relation

. ? -Qn 1 xkn 1+X
1 en 1.1
s kz:;f(xk’ )w;,(xk,n) 1 — xk0) / S V (1.10)

holds for every feL[—1,1];
() relation (1.6) holds for every feC'[—1,1]U{fi}.

Theorem 1.4. Let assumptions (1.1) and (1.2) prevail and let
1 >x1,n ZYin-1 =Xy >y2,n71 = >xn71,n >yn71,n71 ZXpp> — 1. (11 1)
Then the following statements are equivalent:

(a) relation (1.3) holds for every ze C\(—1,1];
(b) the relation

n
. Q- xkn l_x
lim g:l S (Xkn) = / f(x (1.12)

" (Xpe ) (1 4 Xpe )

holds for every feL[—1,1];
(©) relation (1.6) holds for every feC'[—1,1]u{f>}.

Our investigation of the ratio asymptotics (1.3) for general polynomials is
motivated by the ratio asymptotics for orthogonal polynomials. Let a(x) be a
nondecreasing function on [—1, 1] with infinitely many points of increase such that
all moments of du(x) are finite and {P,(o; x)},

Pn(a;x) :Vn(a)xn—’_ T Vn(OC)>0,
the orthonormal polynomials with respect to do. We call do a measure. Ay ,()’s
stand for the Christoffel numbers with respect to do [2, p. 4]. Then we have
[2, Theorems 3.2.3 and 3.2.4, pp. 17-19; Theorems 4.1.12 and 4.1.13, pp. 32-34];
[3, Theorem 10]; [8, Theorem 1], in which

wu(z) = Qy(z) = Py(o;2).

1
7 ()
Theorem A. Let do. be a measure supported in [—1,1] and xi.,’s the zeros of P,(; x).
Then the following statements are equivalent:

(a) we have

" 1 1
im 2=t L [ o) da(x) = 0. (1.13)

n—0 '))n(OC) 2 =90 g
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(b) relation (1.3) holds for every ze C\(—1, 1);
(¢c) the relation

1
lim Zf xkn j'kn( ) n— l(a§xlc,n)2:%/lf(X>Vl—X2dX

n— oo

holds for every feL[—1,1];
(d) the relation

holds for everyfeL[fl7 1];
(e) the relation

holds for everyf eL[-1,1];
() the relation

n OCan
nlingczfx"” Fien (@) 11+x1 /f \/

holds for every feL[—1,1].

(1.14)

(1.15)

(1.16)

(1.17)

Moreover, Statement (a) implies that relation (1.6) holds for every fe C'[—1,1].

We point out that there is a close relationship between Theorems 1.1-1.4 and

Theorem A. In fact, using a well-known formula [1, p. 6]

P,(o; x)
P (o5 Xp )

i) =P8 )P, (500) =

with

P,(o; x)
P! (O‘ xkn)( xlc,n)

and substituting x = xi ,, we obtain

Cien(o;x) =

Vn1(2) 1
“/né“) e (00) Py (06 Xpe ) = IACTP)

Hence

)2 _ “/n(OC)P”_ (O(; xk,n) _ Wp— (O(; xk,n)

ten(@) P (25 ‘ =
B A TR A oy
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and then relations (1.14), (1.15), (1.16), and (1.17) are equivalent to (1.5), (1.8),
(1.10), and (1.12), respectively. Thus, Theorems 1.1-1.4 for the ratio asymptotics
of general polynomials extend and improve Theorem A for the ratio asymptotics of
orthogonal polynomials. The extension of nth root and power asymptotics
for orthogonal polynomials to general polynomials can be found in [6,7],
respectively.

The second motivation of investigation of the ratio asymptotics for general
polynomials is related to study of the asymptotics for polynomials with disturbed
nodes. We restrict ourselves to the result for polynomials with disturbed
nodes corresponding to Theorem 1.1 in details, the other results will be left to the
reader.

Given any two triangular matrices of nodes (n>2):

128,>8,> >8> -1 (1.18)
and
120 1> > >0y = — 1, (1.19)
put
n n—1
ﬂn(x):/l_[l (x = &)y I ( 1 X—”Ik,n—l)-

The last main result of this paper is the following.

Theorem 1.5. Let assumptions (1.1), (1.2), (1.4), (1.18), and (1.19) prevail and let
1>él,n>nl‘n71252112’72.]1712"'>én71n My In—17 énn/ -1 (120)

If one of the Statements (a)—(c) of Theorem 1.1 is true and if

n n—1
nlinolo Zwk-ﬁ —Xk7,,| +Z|nk,n—l _yk,”—1| :03 (121)
k=1 k=1

then the following statements hold.:

(a) the relation

. T, (2) o
nlingo o) 3 o(2) (1.22)

holds for every ze C\[—1, 1];
(b) the relation

n— oo

lim ngkn 1T, 1 5"" = /f W1 = x2dx (1.23)

n

holds for every feL[—1, l];
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(¢c) the relation

im |S” ) Sy IRAC
lim k;f(ék,n) Zf(nkﬂ_l)]— [lmdx (1.24)

k=1

holds for every feC'[—1,1].

The paper is organized as follows. In the next section we state some auxiliary
lemmas. In Section 3 we give the proofs of the theorems. In the last section some
remarks are given.

2. Auxiliary lemmas

Lemma A (Shi [5, Lemma 2]). Let assumption (1.1) prevail. If P(x) = apx"~' +
aix" 2+ - +a,_,, then

i: P(Xk,n) — a. (21)

=1 w), (xk,n)

Lemma B (Nevai [2, p. 62]). We have

1 ! vV1— x2 1

E/4 P dx=¢(z)", zeC\(-1,1). (2.2)
Lemma C (Saff and Totik [4, Example 3.5, p. 45]). We have

1 'In(z - x) ¢(z)

— | —=dx=In——=, zeC\(-1,1). 2.3

) V1I—x2 2 \ ) 23)

Lemma 2.1. Let assumptions (1.1) and (1.2) prevail. If relation (1.3) is true for every
zeC\[-1,1] and if

a Qn— 1 (xk,l1)

WD o)

n k=1

=Ci< + o, (2.4)

then relation (1.5) holds for every fe L[—1,1].
Conversely, if relation (1.5) is true for every f € L|—1, 1], then relation (1.3) holds for
every ze C\[-1, 1].

Proof. To prove the first conclusion by Banach—Steinhaus theorem it suffices to show
that relation (1.5) holds for every polynomial, or equivalently, for every monomial
x" m=0,1,.... To this end using the expansion [1, Formula 1.112-3, p. 21]

$) " =z VEST=all - (1= =3 mz
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and the formulas [1, Formula 3.621-3, p. 369]

1o, | 5 (2i — 1)
— X'V —x2dx =— cos” 0(1 —cos”0)dd = ———
T Jq T Jo (21"‘2)”

1ty
— [ XNV =x2dx=0

T J-

we obtain the identity
1, T
=y / x'V1 — x2 dx. (2.5)
=0 -1
Further, we need the expansion

i “Hlyl zeC\[—-1,1]

i=0

and the Lagrange interpolation formula

0, 1(z) = 3 oilra)enE)

k=1 w;’l('xk;”)(z - xkﬁn)

or equivalently,

2 n 1 xkn)

2.6
U)nZ k=1 xkn Z—xkn) ( )
By (1.3) we have
Q- Q.
2¢(z)"' = lim =~ 1(2) — lim : 1—1 (X )
n— oo (Un(Z) ﬂ—>ook:] wn(xk,,)(z xkn)
n 0
anl(xkn) i
= hm =z i xl ,
na:@k:l (U;,(xkn) ; k,n
which, coupled with (2.5), yields
i xl n l(xkn) 2 o . I
lim =1 ZkpTmnm AT & i1 VT =2 d 57
n—»vZI; @, (X ) n; . (2.7)

Clearly, by (2.1) we have
a Ql’l n
Z & =1= / V1 — x2dx,

k=1 w:’(xk"
which shows that relation (1.5) holds for the function f = 1. Now suppose, as an

induction hypothesis, that relation (1.5) holds for every f(x) = x/, i<m. Then it
follows from the hypothesis and (2.7) that

n 0 i 1
X (g 2 )
. _i—1 ~kpsen n _ rE—
llm E E lenlizf -1 Xl l—xzdx
noe k=1 i=m+1 @ (an) n i=m+1 -1
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and hence, multiplying the factor z”*? on both the sides,

x Q 1 an . o
m+l i “knttn— _ m+171 i,/ 2
nlLHolo E E W — E /_l X 1 —x dx (28)

=1 i=m+1 i=m+1

According to (2.4) we get the estimations

Z Z = i X1 (V) — i bl Z”:x};,n{)n,l(xk,n)
@), (Xkn) @}, (Xkn)

=1 i=m+2 i=m+2 k=1
< i: |Z|m+l i - Q l(xk n) <C() i |Z|m+l4 o CO
~ =

i=m+2 ( ) i=m+2 |Z| -1

and

2 1
< Z |21 l/ V1—xtdx=——.

i=m+2 | |71

2 0 ) 1 )
Sy et [ VT
-1

n i=m+2

Since |z| may be large enough, from (2.8) we conclude that relation (1.5) holds for
f(x) = x™*!. By induction this proves that relation (1.5) holds for every monomial.

To prove the second conclusion of the lemma inserting f(x)=1/(z—
x), zeC\[—1, 1], into (1.5) it follows from (2.6) and (2.2) that

Q,_ " Q V1— x2
lim 21 G) > ) / = dx = 20(z) "
no0 wy(z) oo b @ (Xien) (2 — Xin) z—X

Since the set

(o e}

is a normal family in C\[—1, 1], the convergence in (1.3) holds uniformly in each
compact subset of C\[—1,1]. O

Remark 2.1. > Applying Banach-Alaoglu theorem and using Stieltjes—Perron
inversion formula we can give a more transparent proof of Lemma 2.1 and derive
a more general result: Let M[—1, 1] be the space of Borel real measure in [—1, 1] and
K a compact subset of [—1,1]. Let ve M[—1,1] and zeC\K. Assume that
assumptions (1.1) and (1.2) prevail. If

lim Qu-1(2) _ /1 dv(x)

n— oo wn(z) 1Z2—X

is true and relation (2.4) is valid, then
. : Q1 xkn /
1 “ ) dv(
nlngokz::lf(xk’">w;(xk,, )(z — Xkn) S ) dvix

holds for all f'e C(K).

2This interesting remark is due to one of the referees.
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We omit the details.

Lemma 2.2. Let assumptions (1.1) and (1.2) prevail. If relation (1.3) is true for every
zeC\(—1,1) and if

sup zn:

then relation (1.8) holds for every fe L[—1,1].
Conversely, if relation (1.8) is true for every f € L|—1, 1], then relation (1.3) holds for
every zeC\(—1,1).

kn)

2
o, (X)( —xkﬂn)

<+ o, (2.9)

Proof. Let us prove the first conclusion of the lemma. Since relation (2.9) implies
(2.4), by Lemma 2.1 relation (1.5) holds for every fe L[—1,1]. Inserting x =1 or
x = —1 into (2.6) give

anl(l) _ i ~ anl(xk,n) (210)

wy(1) —l n(Xien) (1 = Xic )

or
Qua(=1) _ E": Q1 (Xkn) 7 (2.11)
@, (=1) = @ (i) (1 4 xkn)
respectively. Hence by (1.3)
I~ Qu_1(x
2 ;wxx;n)l((l k—’"lk,n) =2 212)
and

n 1 xkn) o
nll»rrolo Z o (Xpn) (1 + Xpn) > (213)

It follows from (2.12) and (2.13) that

T Qn1 (Xkn)
lim E " : =2, 2.14

n— oo —l a);l(xk,n)(l — Xin) ( )
which means that relation (1.8) holds for f = 1.

Further, since

i xk,nQn—l (xk,n) _ i Qn—l (xk,n) _ i Qn—l (-xk.n)

k=1 w;«z(xk,n)(l - xi‘n) k=1 (U;«l(xkﬂ)(l - xi,n) k=1 a);,(x/c,n)(l + x/c,n),
by means of (2.13) and (2.14) we conclude

lim i xk,nanl(xk,n) -0

n o0 £— o, (Xpen) (1 — x,zm) ’

which means that relation (1.8) holds for f(x) = x. Now suppose, as an induction
hypothesis, that relation (1.8) holds for every f(x) = x/, i<m (m=>1). Using the
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recurrence relation

m

n xm+2Q B (X ) n X" Q. (X ) n_oym Qo (X )
Z k’n n—1 k,n _ Z kl’l n—1 k,n _ Z k7n n—1 k,n (2 15)
(0]

k=1 @}, (Xkn) (1 = xlzc,n) =1 n (Xre) (1 — x/%,n) 1 @, (Xgen)

and the hypothesis it follows from (1.5) that

nooXTQ, g (x
. ko n—1\Ak, n _“ /1 _ 2
Jim > / md / I dy

k=1 n(xk")(l 7)6/”1

2 1 xm+2 p
—daxX
ERRVA I

which means that relation (1.8) holds for f(x) = x"*2. By induction this proves that
relation (1.8) holds for every monomial and hence for every polynomial. By Banach—
Steinhaus theorem it follows from (2.9) that relation (1.8) holds for every
feL[-1,1].

Let us prove the second conclusion of the lemma. If relation (1.8) holds for every
feL[—1,1], then relation (1.5) also holds for every f € L[—1, 1]. According to Lemma
2.1 relation (1.3) holds for every zeC\[-1,1]. O

Remark 2.2. * By the same way as that in Remark 2.1 we can obtain a similar
extension of Lemma 2.2.

By the same arguments as that of Lemma 2.2 we can get the following two
lemmas, omitting the details.

Lemma 2.3. Let assumptions (1.1) and (1.2) prevail. If relation (1.3) is true for every
zeC\[-1,1) and if

sup i

then relation (1.10) holds for every fe L[—1,1].
Conversely, if relation (1.10) is true for every f'e L[—1,1], then relation (1.3) holds
for every ze C\[—1, 1).

Qy1 xkn)
CL)/ xkn l_xkﬁn)

<+ w0,

Lemma 2.4. Let assumptions (1.1) and (1.2) prevail. If relation (1.3) is true for every
zeC\(=1,1] and if

“ Qy (xk,n)

sup
n ; @, (Xen) (1 + Xpe )

<+ 0,

then relation (1.12) holds for every fe L[—1,1].
Conversely, if relation (1.12) is true for every f'e L[—1,1], then relation (1.3) holds
for every ze C\(—1, 1].

3 This interesting remark is also due to one of the referees.
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Lemma 2.5. Let assumptions (1.1) and (1.2) prevail. If relation (1.3) is true for every
zeC\[-1,1] and if

n—1

Sup > [xkn = Yia1| = C1 < + o0, (2.16)
k=1

then relation (1.6) holds for every fe C'[—1,1].
Conversely, if relation (1.6) is true for every f € C'[—1,1], then relation (1.3) holds
for every zeC\[—1, 1].

Proof. To prove the first conclusion of the lemma we use (1.3) and (2.3) to obtain

[ n-1 !
' o(z) 1 In(z — x)
1 E In(z — - E In(z = yep-1) | =1 . '
iy — n(z — Xin) — n(z = Yien 1)‘| " mJ V=2 dx

Let P(x) = [T%, (x —z), zx€C\[—1,1]. Then the above relation yields
n n—1 1
. 1 In P(x)
lim |1 -3 == . 2.1
| & I ) = 2 I Pk =5 Lo 217)

Now let us show that relation (1.6) holds for every f(x)=x" m=0,1,... .
Obviously, relation (1.6) holds for f = 1. Assume that m>1 is fixed. Let N be an odd
integer and

k=0 ke 7k:N+l k!

Clearly, Pi(x)>0, Py(x)>0, xe[—1,1], and & = Pi(x) + P»(x). Given an arbi-
trary positive number &, choose an odd integer N so large that

I

P
where || - || stands for the uniform norm on [—1, 1]. For this fixed number N we write

o=l

It is easy to see that

Pi(x) +Po(x) & n
Py =1 Pl(x)_x In Py (x) (2.18)

[ <

g(x) =1In
and

P,
lol<[72] <= (2.19)
1
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Meanwhile
o Pi(x)
/ =[x —In P I m—1 _ 11
g(x) =[x n P(x)] = mx i)
S o mx (ke — 1)
Pi(x)
M PL() — () /()
Pi(x)
mxmWN+1)—1
B N!Pl (X) '
Hence
mxm m(N+1)—
1911 = || < | <= (.20

Thus by the mean value theorem for derivative it follows from (2.16), (2.19), and
(2.20) that

n

- 1 g(x)
X n n— dx
> gl kZ:: 9(ra-1) /_ R

k=1

n—1

- U N [CO N
kz:; an ykn 1)]+g( n,n) 7 /1md

n—1

<911 e = Yen-1] +2llg]
k=1

<(C +2)e. (2.21)

On the other hand, by (2.17) there is a number 7y such that for n>ny:

lnPl()
In Py (yk - —f/ dx
Z RS A

Thus using (2.18), (2.21), and (2.22) we have that for n>ny:

<e. (2.22)

m

1
Zxkn Zykn 1 _/—lhdx

which proves that relation (1.6) holds for f(x) = x™.
Denote

<(Cy +3)e,

-1

(f) = z”:f(xkﬂ) - Zf(ykﬂ—])-
k=1

=1

=

b
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367
Then by the mean value theorem for derivative it follows from (2.16) that
[Lal] = sup [La (I
max{][f[].]/"]1} <1
n—1
= sup S [f () =S D)) S ()
max{[[/LIF} <1 3=
n—1
= sup Z f/(ék)(xk,n - yk,nfl) +f(xn,n)
max{|[f|[l/"[1} <1| k=1
n—1
< Z |xk,n _yk,nfll + 1
k=1
<C+1.
Then by Banach-Steinhaus theorem relation (1.6) holds for every fe C'[—1,1].
Let us prove the second conclusion of the lemma. Inserting f(x) = In(z — x) into
(1.6) we get
. wn(z) } 1 ['In(z—x)
lim In =— ———dx.
n— o {in(z) -1 V1= x?

It remains to apply (2.3). O

3. Proofs of theorems

3.1. Proof of Theorem 1.1. Since relations (1.1), (1.2), and (1.4) imply
anl (xk.n)
wgz(xk,n)

we have by (2.1)

=0, k=1,2,...,n,

n

>

k=1

Q1 xkn
! (xk,,

Z 2 ”“"" ~ 1. (3.1)

CL)/ xk n

Meanwhile relation (1.4) also yields

n—1
Z ‘xk,n — Vin—1 | <2. (32)
k=1

Then both (2.4) and (2.16) hold. Hence Theorem 1.1 follows from Lemmas 2.1 and
25 0O

3.2. Proof of Theorem 1.2. Statement (a)=- (b). In the proof of Lemma 2.2
Statement (a) alone implies (2.14). By (1.1), (1.2), (1.7), and (2.14)

Jm, Z

nlxkn

1 xk
hmE - ")2 =2.
! (Xken) l—xk n— o L (Xgen) (1 = x7,)
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We conclude that relation (2.9) is true. It remains to apply Lemma 2.2.

(b) = (a). Apply Lemma 2.2.

(a)<>(c). By Theorem 1.1 it is enough to show that relation (1.3) holds for x =1
(or x = —1) if and only if relation (1.6) holds for ' = fi (or f = f3). But this is indeed
the case by (2.3). O

3.3. Proof of Theorem 1.3. Use the same argument as that of Theorem 1.2 applying
Lemma 2.3 instead of Lemma 2.2. [

3.4. Proof of Theorem 1.4. Use the same argument as that of Theorem 1.2 applying
Lemma 2.4 instead of Lemma 2.2. [

3.5. Proof of Theorem 1.5. According to Theorem 1.1 it is sufficient to show that

Statement (c) of Theorem 1.1 implies Statement (c) of Theorem 1.5. To this end
applying the mean value theorem for derivative we see

. VAS)
_kz_:lf(nk,nl)_;/ mdx

n n—1
= Z[f(ékn S (Xn) +Z kn—1) = (1))
k=1 k=1
n n—1 1
1 f(x)
+ xk 11 f yk n— l / dx
; ; -1V1—x?
n n—1
= f,(Qk,n)(ék,n - xk,n) + Z fl(rkﬂ*l)(yk,nfl - nkAnfl)
k=1 k=1
n—1
X, — dx
kz k n ; f(yk n— 1 m ] ‘
n—1
[ ék,n - xk,n| =+ Z V-1 — Mien—1 ]
k=1 k=1
n n—1 1
+ xkn f yk.nf - - / .
— = 2 T JaV1—x2

Then relation (1.23) follows from (1.21) and (1.6). O

4. Remarks

4.1. Assumption (2.4) is necessary for the first conclusion of Lemma 2.1 in
general. In fact, by Banach—Steinhaus theorem it is enough to show that
Statement (a) of Theorem 1.1 does not imply (2.4). This is the case from the
following example.
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Let
o (x) = 227(x = x10) Tt (%), (4.1)
Qa1 (X) = Wp-1 (X),
where 7, stands for the nth Chebyshev polynomial of the first kind and
Xip = lip-1+n"" (4.2)
Then for ze C\[-1, 1]
tim 2 _ iy 2T ()
n—w ,_1(z) -0 257z = X1 5-1) Th2(2)
T Tnfl(Z) . 1
= T e 226
But
On—1(X12) _ 237Xy — X101) Tuea(X10)
@}, (X1.0) 22-n Ty1(x1.0)

2(x10 — X1p—1) (X190 — X20-1)
(xl,n - x2,n>(x1,n - xn.n)
tipr +0" —tipn — (n— 1)_(n_])][tl‘n—l +n" — ]
"t 0 = byt 1]

\Y

=n"ti o1 — iy — (n— 1)_("_1)]2

¢
>,
where ¢>0 is a certain constant. Thus relation (2.4) is violated.

4.2. Although Statement (b) of Theorem 1.1 is equivalent to Statement (b) of
Theorem 1.2 in the case of orthogonal polynomials, this equivalence does not remain
true for general polynomials, even if assumption (1.7) is valid.

For example, let w, and ©,_; be given in (4.1) but here

Xip=1-n" (4.3)
instead of (4.2). Clearly assumption (1.7) is valid and hence relation (3.1) holds, which
implies (2.4). By the same argument as that in Section 4.1 we conclude that Statement
(a) of Theorem 1.1 is true and hence Statement (b) of Theorem 1.1 holds. But

On—1(X1,) _ 257 (x1 0 — X1 1) Tz (X1.0)

@y, (x1,)(1 7x%,n) 22T (x1)(1 7'x%,n)

Xip— Xip1 _ (n— 1)7(”71) —n"

I —x1, n"

n—1
:n[ " ] —1=zn-1,
n—1

which implies that relation (1.8) is not true for f = 1.
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